Abstract

The infinitesimal model is extended to cover linkage in finite populations. General equations to predict the dynamics of the genetic variation under the joint effects of mutation, selection and drift are derived. Under truncation and stabilizing selection, the quadratic equations for the asymptotic genetic variance (VG) are respectivelyV2G(1+kS)+VG (Ve−2NeVm) −2NeVmVe=0andV2G(1+S)+VG (Ve+γ−2NeVm) −2NeVm(Ve+γ)=0,where Ne is the effective population size, Vm is the mutational variance, Ve is the environmental variance, γ is the parameter that measures the spread of fitness around the optimum under stabilizing selection, k is equal to i(i−x) where i is the selection intensity and x is the cut-off point under truncation selection. The term S is a function of the number of chromosomes (v) and the average chromosome length (l):formula hereThese predictions are accurate when compared with results of simulations of small populations unless the number of genes is small. The infinitesimal model reduces to the continuum of alleles model if there is no recombination between homologous chromosomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call