Abstract

Aiming at the imbalance problem of wireless link samples, we propose the link quality estimation method which combines the K-means synthetic minority over-sampling technique (K-means SMOTE) and weighted random forest. The method adopts the mean, variance and asymmetry metrics of the physical layer parameters as the link quality parameters. The link quality is measured by link quality level which is determined by the packet receiving rate. K-means is used to cluster link quality samples. SMOTE is employed to synthesize samples for minority link quality samples, so as to make link quality samples of different link quality levels reach balance. Based on the weighted random forest, the link quality estimation model is constructed. In the link quality estimation model, the decision trees with worse classification performance are assigned smaller weight, and the decision trees with better classification performance are assigned bigger weight. The experimental results show that the proposed link quality estimation method has better performance with samples processed by K-means SMOTE. Furthermore, it has better estimation performance than the ones of Naive Bayesian, Logistic Regression and K-nearest Neighbour estimation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.