Abstract
In traditional link prediction, many researches assume that endpoint influence, represented by endpoint degree, prefers to facilitate the connection between big-degree endpoints. However, after investigating the network structure, it is observed that influence is determined by the relations built through the paths between endpoints instead of the endpoint degree. Strong relations connecting the other endpoint through short paths, especially through common neighbors, can bring in more powerful influence, and in contrast, those relations through long paths obviously generate weak influence. In this paper, a novel link prediction index SI is proposed, which deliberately models the significant influence by distinguishing the strong influence from the weak. After comparison with main stream baselines on 12 benchmark datasets, the results suggest SI effectively improve the link prediction accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.