Abstract
Link prediction has gained popularity in recent years in large networks. Researchers have proposed various methods for finding the missing links. These methods include common neighbour, Jaccard coefficient, etc. based on the proximity of the nodes. These methods have limitations as they treat all common nodes equal from a pair of nodes. A new method is proposed, common neighbour's common neighbour (CNCN). Its performance is better than the existing methods in a single layer network. These methods are based on the topological features of the network. The proposed method finds the different behaviour of common nodes for a pair of nodes. The link prediction is also useful in the multiplex networks. The link predictions in the multiplex networks are more useful than the single layer network as several layers may give more information about a node than the single layer network. Two methods are proposed using dynamic and static weights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Business Intelligence and Data Mining
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.