Abstract
We address the problem of link prediction in collections of objects connected by multiple relation types, where each type may play a distinct role. While traditional link prediction models are limited to single-type link prediction we attempt here to jointly model and predict the multiple relation types, which we refer to as the Link Pattern Prediction (LPP) problem. For that, we propose a tensor decomposition model to solve the LPP problem, which allows to capture the correlations among different relation types and reveal the impact of various relations on prediction performance. The proposed tensor decomposition model is efficiently learned with a conjugate gradient based optimization method. Extensive experiments on real-world datasets demonstrate that this model outperforms the traditional mono-relational model and can achieve better prediction quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.