Abstract

The high-level contributions of this paper are the design and development of two distributed spanning tree-based data gathering algorithms for wireless mobile sensor networks and their exhaustive simulation study to investigate a complex stability vs. node-network lifetime tradeoff that has been hitherto not explored in the literature. The topology of the mobile sensor networks changes dynamically with time due to random movement of the sensor nodes. Our first data gathering algorithm is stability-oriented and it is based on the idea of finding a maximum spanning tree on a network graph whose edge weights are predicted link expiration times (LET). Referred to as the LET-DG tree, the data gathering tree has been observed to be more stable in the presence of node mobility. However, stability-based data gathering coupled with more leaf nodes has been observed to result in unfair use of certain nodes (the intermediate nodes spend more energy compared to leaf nodes), triggering pre-mature node failures eventually leading to network failure (disconnection of the network of live nodes). As an alternative, we propose an algorithm to determine a minimum-distance spanning tree (MST) based data gathering tree that is more energy-efficient and prolongs the node and network lifetimes, at the cost frequent tree reconfigurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.