Abstract

Using the MPEG-4 advanced audio coder (AAC) music as an example of streaming applications, we investigate the improvement of error performance for the streaming service by link adaptation and power control techniques in an enhanced general packet radio services (EGPRS) cellular network. A low packet error rate and variability are essential in providing a short error-burst length so that error concealment techniques can be effectively applied to music packets. We study the effects of a combined link adaptation and power control scheme (referred to as the error-based scheme) for achieving a target error rate and reducing error variability. By simulation, we compare the error performance of the error-based scheme at both the EGPRS block and AAC frame level with another adaptation algorithm (referred to as the throughput-based scheme) with a goal of maximizing overall network throughput. It is found that when offered with a similar traffic load, the former scheme can provide noticeable improvement of music quality over the throughput-based scheme. To achieve a similar AAC frame error rate, our results also show that the error-based scheme can increase the link throughput over the throughput-based scheme by 66.7% in one of our examples. These results reveal that by aiming at required error targets and thus reducing error variability, the error-based scheme for link adaptation and power control are helpful in improving quality and capacity for streaming applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.