Abstract

The human ventral visual cortex is functionally organized into different domains that sensitively respond to different categories, such as words and objects. There is heated debate over what principle constrains the locations of those domains. Taking the visual word form area (VWFA) as an example, we tested whether the word preference in this area originates from the bottom-up processes related to word shape (the shape hypothesis) or top-down connectivity of higher-order language regions (the connectivity hypothesis). We trained subjects to associate identical, meaningless, non-word-like figures with high-level features of either words or objects. We found that the word-feature learning for the figures elicited the neural activation change in the VWFA, and learning performance effectively predicted the activation strength of this area after learning. Word-learning effects were also observed in other language areas (i.e., the left posterior superior temporal gyrus, postcentral gyrus, and supplementary motor area), with increased functional connectivity between the VWFA and the language regions. In contrast, object-feature learning was not associated with obvious activation changes in the language regions. These results indicate that high-level language features of stimuli can modulate the activation of the VWFA, providing supportive evidence for the connectivity hypothesis of words processing in the ventral occipitotemporal cortex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call