Abstract

Treatment regimen recommended for resistant tuberculosis consists of various drugs and these drugs are prescribed for at least 12-15 months. Such a long duration therapy and high dose of antibiotics result in adverse drug reactions (ADRs). ADRs may lead to various complications in disease management like replacement of drugs, dose increment, therapy withdrawal, etc. Linezolid is one of those drugs, practiced as an anti-mycobacterial agent and it is an important member of drug regimen for MDR and XDR tuberculosis. Linezolid is a broad spectrum antibiotic known for its unique mechanism of inhibition of resistant pathogenic strains. However, it causes serious adverse effects like thrombocytopenia, optic neuropathy, peripheral neuropathy, lactic acidosis, etc. Literature suggests that Linezolid can cause severe ADRs which affect patient compliance and hinder in therapy to a larger extent. Recent studies confirm the possibility of ADRs to be predicted with genetic make-up of individuals. To effectively deliver the available treatment regimen and ensure patient compliance, it is important to manage ADRs more efficiently. The role of pharmacogenomics in reducing adverse drug effects has been recently explored. In the present review, we discussed about Linezolid induced adverse drug reactions, mechanisms and genetic associations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.