Abstract

AbstractThis paper presents a nonlinear analysis of the effect of linewidth enhancement factor (LEF) on the amplification of angle-modulated optical signals in injection-locked mid-infrared (IR) quantum cascade lasers (QCLs). A higher value of LEF tends to conserve the output angle modulation index of the amplified mid-IR signal particularly in the low-modulation frequency region. Further, a higher value of signal injection ratio produces a wider bandwidth of the locked QCL amplifier. The LEF introduces asymmetry in the lockband (LB) of the injection-locked QCL and this asymmetry increases with the increase in the value of LEF. Typically ratio of calculated lower-side LB to upper-side LB for an injection power level of – 20 dB and a LEF of unity is 1.67. The electron relaxation time in the uppermost subband lasing level in a three-level system has a profound effect on the LB asymmetry in a QCL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.