Abstract

ABSTRACTWe have obtained theoretical stress-temperature curves for passivated Al lines undergoing thermal cycling. A finite element plane-strain cross-sectional analysis with a time-dependent constitutive property for Al, based on equations for discreteobstacle controlled plasticity, was performed. The parameters for this Al constitutive relation were obtained by fitting with experimentally obtained stress-temperature curves for Al blanket films on silicon. Theoretical results agree well with the x-ray diffraction experimental data of Besser et al.1 Using a time-dependent property for Al helps match the data better than a time-independent property. Theoretical stress-temperature curves were also obtained for the longitudinal, transverse, and normal stress components in aluminum lines for line-widths ranging from 0.5 to 10 µm. The hysteresis of the stress-temperature curve of Al gets less as the line-width gets smaller. All stress components in the Al line change substantially with linewidth for the same oxide thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.