Abstract

We propose a new algorithm, the DomEig algorithm, for obtaining the line-sum-symmetric similarity-scaling of a given irreducible, essentially nonnegative matrix A. It is based on results concerning the minimum dominant eigenvalue of an essentially nonnegative matrix under trace-preserving perturbations of its diagonal. In this note we relate the minimum dominant eigenvalue problem to the problem of determining the diagonal scaling matrix for line-sum-symmetry. We present the DomEig algorithm, prove its convergence, and discuss briefly the results of a comparison of this algorithm with another algorithm, the DSS algorithm, often used for line-sum symmetry. The experiments suggest that, for matrices of order greater than 50, the convergence rate, measured either in flop counts or CPU time, is significantly greater for DomEig than for DSS, with the improvement in rate increasing as the order increases. The algorithm may be useful in such applications as the scaling of large social accounting matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.