Abstract

A general protocol for theoretical modeling of inner-shell photoelectron spectra of molecular clusters is presented and applied to C1s spectra of oligomers and medium-sized clusters of methanol. The protocol employs molecular dynamics for obtaining cluster geometries and a polarizable force field for computing site-specific chemical shifts in ionization energy and linewidth. Comparisons to spectra computed from first-principle theories are used to establish the accuracy of the proposed force field approach. The model is used to analyze the C1s photoelectron spectrum of medium-sized clusters in terms of surface and bulk contributions. By treating the surface-to-bulk ratio as an adjustable parameter, satisfactory fits are obtained to experimental C1s spectra of a beam of methanol clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.