Abstract
Quantum dots are an important model system for thermoelectric phenomena, and may be used to enhance the thermal-to-electric energy conversion efficiency in functional materials, by tuning the Fermi energy relative to the dots’ transmission resonances. It is therefore important to obtain a detailed understanding of a quantum dot's thermopower as a function of the Fermi energy. However, so far it has proven difficult to take the effects of interactions into account in the interpretation of experimental data. In this paper, we present detailed measurements of the thermopower of quantum dots defined in heterostructure nanowires. We show that the thermopower lineshape is described well by a Landauer-type transport model that uses as its input experimental values of the dot conductance, which contains information about interaction effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.