Abstract

For two measured laminations ν+ and ν− that fill up a hyperbolizable surface S and for \(t\,\in\,(-\infty,\infty)\), let \({\mathcal{L}}_t\) be the unique hyperbolic surface that minimizes the length function etl(ν+) + e-tl(ν−) on Teichmuller space. We characterize the curves that are short in \({\mathcal{L}}_t\) and estimate their lengths. We find that the short curves coincide with the curves that are short in the surface \({\mathcal{G}}_t\) on the Teichmuller geodesic whose horizontal and vertical foliations are respectively, etν+ and etν−. By deriving additional information about the twists of ν+ and ν− around the short curves, we estimate the Teichmuller distance between \({\mathcal{L}}_t\) and \({\mathcal{G}}_t\). We deduce that this distance can be arbitrarily large, but that if S is a once-punctured torus or four-times-punctured sphere, the distance is bounded independently of t.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.