Abstract
We study ancestral structures for the two-type Moran model with mutation and frequency-dependent selection under the nonlinear dominance or fittest-type-wins scheme. Under appropriate conditions, both lead, in distribution, to the same type-frequency process. Reasoning through the mutations on the ancestral selection graph (ASG), we develop the corresponding killed and pruned lookdown ASGs and use them to determine the present and ancestral type distributions. To this end, we establish factorial moment dualities to the Moran model and a relative. We extend the results to the diffusion limit and present applications for finite populations, as well as for moderate and weak selection limits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.