Abstract

Random geometric graphs have been one of the fundamental models for reasoning about wireless networks: one places n points at random in a region of the plane (typically a square or circle), and then connects pairs of points by an edge if they are within a fixed distance of one another. In addition to giving rise to a range of basic theoretical questions, this class of random graphs has been a central analytical tool in the wireless networking community.For many of the primary applications of wireless networks, however, the underlying environment has a large number of obstacles, and communication can only take place among nodes when they are close in space and when they have line-of-sight access to one another --- consider, for example, urban settings or large indoor environments. In such domains, the standard model of random geometric graphs is not a good approximation of the true constraints, since it is not designed to capture the line-of-sight restrictions.Here we propose a random-graph model incorporating both range limitations and line-of-sight constraints, and we prove asymptotically tight results for κ-connectivity. Specifically, we consider points placed randomly on a grid (or torus), such that each node can see up to a fixed distance along the row and column it belongs to. (We think of the rows and columns as streets and avenues among a regularly spaced array of obstructions.) Further, we show that when the probability of node placement is a constant factor larger than the threshold for connectivity, near-shortest paths between pairs of nodes can be found, with high probability, by an algorithm using only local information. In addition to analyzing connectivity and κ-connectivity, we also study the emergence of a giant component, as well an approximation question, in which we seek to connect a set of given nodes in such an environment by adding a small set of additional relay nodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.