Abstract
Measurements of absorption coefficients in the 3 v 3 band of CO 2 at 1.44 μm perturbed by Ar up to 146 bar have been analyzed by using two line-mixing theoretical calculations within the impact approximation. In the first approach, the relaxation operator is treated semi-classically with adiabatic corrections. In the second, the relaxation operator is modelled with the Energy Corrected Sudden (ECS) approximation associated with a power fitting law providing the basic rotational state-to-state rates. Although the line-coupling spectroscopic cross-sections of the two models are significantly different, they both lead to satisfactory agreement with bandshapes at moderate densities (< 100 Amagat). Significant deviations between experimental and calculated spectra appear at higher densities. They are mainly attributed to the probable breakdown of the impact and binary collision approximations and to a number of reasons including an incorrect ECS calculation of the interbranch coupling, the nonlinear density dependence due to the finite volume of the molecules, and the neglect of the unknown imaginary part of the off-diagonal elements in the calculated relaxation matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.