Abstract

We studied the electrophoretic behavior of DNA chains in linear-polymer solutions using Brownian dynamics with an anisotropic friction tensor. We simulated the linear-shaped motion of DNA observed in highly entangled solutions [Ueda et al. : Biophys. Chem. 71 (1998) 113] using a model with a chain segment equal to 1/4 of the persistence length. A linear conformation is seen for a chain with high segment-density regions, which remain at the same positions in space, with a high anisotropy of friction, while a U-shaped conformation is seen for a chain with a low anisotropy of friction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.