Abstract

We present a linear-scaling method for electronic structure computations in the context of Kohn-Sham density functional theory (DFT). The method is based on a subspace iteration, and takes advantage of the nonorthogonal formulation of the Kohn-Sham functional, and the improved localization properties of nonorthogonal wave functions. A one-dimensional linear problem is presented as a benchmark for the analysis of linear-scaling algorithms for Kohn-Sham DFT. Using this one-dimensional model, we study the convergence properties of the localized subspace-iteration algorithm presented. We demonstrate the efficiency of the algorithm for practical applications by performing fully three-dimensional computations of the electronic density of alkane chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.