Abstract

In this paper, we construct linearly stable quasi-periodic breathers for the Hamiltonian systems in the form \({{\rm i} \dot{q}_n+v_n q_n+\delta|q_n|^2q_n+\varepsilon_n \left(q_{n+1}+q_{n-1} \right)=0,\quad n \in \mathbb{Z}}\) where \({\{v_n\}_{n \in \mathbb{Z}}}\) is a family of time independent identically distributed (i.i.d) random variables with common distribution \({g = dv_n, v_n \in [0,1]}\) and \({|\varepsilon_n| \leq \varepsilon e^{-\varrho |n|}}\) with \({\varepsilon,\varrho > 0}\) . We prove that for \({\varepsilon, \delta}\) sufficiently small, the equation admits a family of small-amplitude and linearly stable, time quasi-periodic solutions for most of the parameters \({\{v_n\}_{n \in \mathbb{Z}}}\) .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.