Abstract

This work provides the design and analysis of a single layer, linearly polarized millimeter wave reflectarray antenna with mutual coupling optimization. Detailed analysis was carried out at 26 GHz design frequency using the simulations of the reflectarray unit cells as well as the periodic reflectarray antenna. The simulated results were verified by the scattering parameter and far-field measurements of the unit cell and periodic arrays, respectively. A close agreement between the simulated and measured results was observed in all the cases. Apart from the unit cells and reflectarray, the waveguide and horn antenna were also fabricated to be used in the measurements. The measured scattering parameter results of the proposed circular ring unit cells provided a maximum reflection loss of 2.8 dB with phase errors below 10°. On the other hand, the measured far-field results of the 20 × 20 reflectarray antenna provided a maximum gain of 26.45 dB with a maximum 3 dB beam width of 12° and 1 dB gain drop bandwidth of 13.1%. The performance demonstrated by the proposed reflectarray antenna makes it a potential candidate to be used in modern-day applications such as 5th Generation (5G) and 6th Generation (6G) communication systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.