Abstract

The transition from laminar to turbulent flow in a hypersonic boundary layer is modeled using an intermittency-based linear combination approach. A simplified transition model like this enables a quick assessment of aero-thermal loads and the overall flight efficiency of high-speed vehicles during the initial design phase by weighting purely laminar and turbulent flow results on the basis of an empirically calculated intermittency. The transition model presented within this work includes an empirical model to account for Mach number, Reynolds number, wall temperature and pressure gradient effects on turbulent spot growth based on available turbulent spot studies in the literature. A validation of the transition model is carried out for a number of different test cases and a methodology to extend the model to generic geometries is presented to enable a more general application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.