Abstract

We analyze a deterministic form of the random walk on the integer line called the liar machine, similar to the rotor-router model, finding asymptotically tight pointwise and interval discrepancy bounds versus random walk. This provides an improvement in the best-known winning strategies in the binary symmetric pathological liar game with a linear fraction of responses allowed to be lies. Equivalently, this proves the existence of adaptive binary block covering codes with block length n, covering radius ≤ fn for f ∈ (0, 1/2), and cardinality O( √ log log n/(1−2f)) times the sphere bound 2/ ( n ≤bfnc ) .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.