Abstract

Noncovalent spatial interaction has become an intriguing and important tool for constructing optoelectronic molecules. In this study, we linearly attached three conjugated units in a multi π-stacked manner by using just one trident bridge based on indeno[2,1-b]fluorene. To achieve this structure, we improved the synthetic approach through double C-H activation, significantly simplifying the preparation process. Due to the proximity of the C10, C11, and C12 sites in indeno[2,1-b]fluorene, we derived two novel donor|acceptor|donor (D|A|D) type molecules, 2DMB and 2DMFB, which exhibited closely packed intramolecular stacking, enabling efficient through-space charge transfer. This molecular construction is particularly suitable for developing high-performance thermally activated delayed fluorescence materials. With donor(s) and acceptor(s) constrained and separated within this spatially rigid structure, elevated radiative transition rates, and high photoluminescence quantum yields were achieved. Organic light-emitting diodes incorporating 2DMB and 2DMFB demonstrated superior efficiency, achieving maximum external quantum efficiencies of 28.6% and 16.2%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.