Abstract
We consider stochastic and deterministic three-wave semi-linear systems with bounded and almost continuous set of frequencies. Such systems can be obtained by considering nonlinear lattice dynamics or truncated partial differential equations on large periodic domains. We assume that the nonlinearity is small and that the noise is small or void and acting only in the angles of the Fourier modes (random phase forcing). We consider random initial data and assume that these systems possess natural invariant distributions corresponding to some Rayleigh-Jeans stationary solutions of the wave kinetic equation appearing in wave turbulence theory. We consider random initial modes drawn with probability laws that are perturbations of theses invariant distributions. In the stochastic case, we prove that in the asymptotic limit (small nonlinearity, continuous set of frequency and small noise), the renormalized fluctuations of the amplitudes of the Fourier modes converge in a weak sense towards the solution of the linearized wave kinetic equation around these Rayleigh-Jeans spectra. Moreover, we show that in absence of noise, the deterministic equation with the same random initial condition satisfies a generic Birkhoff reduction in a probabilistic sense, without kinetic description at least in some regime of parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.