Abstract
Multiconfiguration pair-density functional theory (MC-PDFT) is a computationally efficient method that computes the energies of electronic states in a state specific or state average framework via an on-top functional. However, MC-PDFT does not include state interaction among these states since the final energies do not come from the diagonalization of an effective model-space Hamiltonian. Recently, multistate extensions such as linearized PDFT (L-PDFT) have been developed to accurately model the potentials near conical intersections and avoided crossings. However, there has not been any systematic study evaluating their performance for predicting vertical excitations at the equilibrium geometry of a molecule, when the excited states are generally well separated. In this paper, we report the performance of L-PDFT on the extensive QUESTDB data set of vertical excitations using a database of automatically selected active spaces. We show that L-PDFT performs well on all these excitations and successfully reproduces the performance of MC-PDFT. These results further demonstrate the potential of L-PDFT, as its scaling is constant with the number of states included in the state-average manifold, whereas MC-PDFT scales linearly in this regard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.