Abstract

The dynamics of calcium and other diffusible second messengers play an important role in intracellular signaling. We show here the conditions under which nonlinear equations governing the diffusion, extrusion, and buffering of calcium can be linearized. Because the resulting partial differential equation is formally identical to the one-dimensional cable equation, quantities analogous to the input resistance, space constant, and time constant--familiar from the study of passive electrical propagation--can be defined. Using simulated calcium dynamics in an infinite cable and in a dendritic spine as examples, we bound the errors due to the linearization, and show that parameter uncertainty is so large that most nonlinearities can usually be ignored: robust phenomena in the nonlinear model are also present in the linear model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.