Abstract
This paper proposes an optimization framework to deal with the uncertainty in a day-ahead scheduling of smart active distribution networks (ADNs). The optimal scheduling for a power grid is obtained such that the operation costs of distributed generations (DGs) and the main grid are minimized. Unpredictable demand and photovoltaics (PVs) impose some challenges such as uncertainty. So, the uncertainty of demand and PVs forecasting errors are modeled using a hybrid stochastic/robust (HSR) optimization method. The proposed model is used for the optimal day-ahead scheduling of ADNs in a way to benefit from the advantages of both methods. Also, in this paper, the ac load flow constraints are linearized to moderate the complexity of the formulation. Accordingly, a mixed-integer linear programming (MILP) formulation is presented to solve the proposed day-ahead scheduling problem of ADNs. To evaluate the performance of the proposed linearized HSR (LHSR) method, the IEEE 33-bus distribution test system is used as a case study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.