Abstract
We present a general finite element linearized Landau-Lifshitz-Gilbert equation (LLGE) solver for magnetic systems under weak time-harmonic excitation field. The linearized LLGE is obtained by assuming a small deviation around the equilibrium state of the magnetic system. Inserting such expansion into LLGE and keeping only first order terms gives the linearized LLGE, which gives a frequency domain solution for the complex magnetization amplitudes under an external time-harmonic applied field of a given frequency. We solve the linear system with an iterative solver using generalized minimal residual method. We construct a preconditioner matrix to effectively solve the linear system. The validity, effectiveness, speed, and scalability of the linear solver are demonstrated via numerical examples.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.