Abstract

We present a general finite element linearized Landau-Lifshitz-Gilbert equation (LLGE) solver for magnetic systems under weak time-harmonic excitation field. The linearized LLGE is obtained by assuming a small deviation around the equilibrium state of the magnetic system. Inserting such expansion into LLGE and keeping only first order terms gives the linearized LLGE, which gives a frequency domain solution for the complex magnetization amplitudes under an external time-harmonic applied field of a given frequency. We solve the linear system with an iterative solver using generalized minimal residual method. We construct a preconditioner matrix to effectively solve the linear system. The validity, effectiveness, speed, and scalability of the linear solver are demonstrated via numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.