Abstract

Linearized free maxicircle DNA, present in detergent lysates of Crithidia fasciculata mitochondria, was thought to be a replication intermediate formed during rolling circle replication of maxicircle DNA. Gel electrophoresis of the linearized free maxicircles indicated that they were slightly larger than the maxicircle genome, raising the possibility of the presence of terminal repetitions (Hajduk, S.L., Klein, V.A. and Englund, P.T. (1984) Cell 36, 483–492). We recently found, however, that maxicircles replicate by a θ-mechanism, and not as rolling circles (Carpenter, L.R. and Englund, P.T. (1995) Mol. Cell Biol. 15, 6794–6803). Given that θ-replication does not easily explain the presence of linearized free maxicircles, we investigated alternative explanations for their existence. We present evidence that this DNA species results from the double-strand cleavage of maxicircles due to detergent denaturation of intracellular topoisomerase II cleavable complexes. As expected for a topoisomerase II cleavage product, the linearized free maxicircle DNA is covalently bound to protein at both 5′ ends. In addition, the slightly larger apparent size of linearized free maxicircle DNA or maxicircles linearized by a restriction enzyme can be explained by anomalous electrophoretic migration during conventional or pulsed-field agarose gel electrophoresis. This anomalous migration is presumably due to bends or other unusual structures in the DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.