Abstract

The nonlinearity and double salient pole of the switched reluctance motor make the control difficult and the torque fluctuation is large. To achieve good control performance, this study introduces a novel linearized fractional-order controller with the disturbance observer to regulate the speed and torque of a switched reluctance motor. Based on fractional differential calculus theory, the fractional-order proportional integral controller is designed. The disturbance observer is introduced to overcome the influence of nonlinearity on the switched reluctance motor and reduce the torque fluctuation. By using the extended state in the disturbance observer, the disturbances are estimated and compensated to achieve linearization and determinism. The parameter values of the proposed controller are obtained by employing the trial-and-error method. The frequency-domain analysis of the proposed controller shows that it has a good suppression performance for medium- and high-frequency disturbances. Through simulation, the performance of the system is analyzed. The results show good performance of the controller in speed change, current, and torque fluctuation reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call