Abstract

This article introduces a one-dimensional (1D) higher-order exact formulation for linearized buckling analysis of beam-columns. The Carrera Unified Formulation (CUF) is utilized and the displacement field is expressed as a generic N-order expansion of the generalized unknown displacement field. The principle of virtual displacements is invoked along with CUF to derive the governing equations and the associated natural boundary conditions in terms of fundamental nuclei, which can be systematically expanded according to N by exploiting an extensive index notation. After the closed form solution of the N-order beam-column element is sought, an exact dynamic stiffness (DS) matrix is derived by relating the amplitudes of the loads to those of the responses. The global DS matrix is finally processed through the application of the Wittrick-Williams algorithm to extract the buckling loads of the structure. Isotropic solid and thin-walled cross-section beams as well as laminated composite structures are analyzed in this article. The validity of the formulation and its broad range of applicability are demonstrated through comparisons of results from the literature and by using commercial finite element codes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call