Abstract

Finding a solution of a linear equation Au = f with various minimization properties arises from many applications. One such application is compressed sensing, where an efficient and robust-to-noise algorithm to find a minimal l 1 norm solution is needed. This means that the algorithm should be tailored for large scale and completely dense matrices A, while Au and A T u can be computed by fast transforms and the solution we seek is sparse. Recently, a simple and fast algorithm based on linearized Bregman iteration was proposed in [28, 32] for this purpose. This paper is to analyze the convergence of linearized Bregman iterations and the minimization properties of their limit. Based on our analysis here, we derive also a new algorithm that is proven to be convergent with a rate. Furthermore, the new algorithm is simple and fast in approximating a minimal l 1 norm solution of Au = f as shown by numerical simulations. Hence, it can be used as another choice of an efficient tool in compressed sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.