Abstract

We study the dynamics of {\it topologically Anosov} homeomorphisms of non-compact surfaces. In the case of surfaces of genus zero and finite type, we classify them. We prove that if $f\colon S \to S$, is a Topologically Anosov homeomorphism where $S$ is a non-compact surface of genus zero and finite type, then $S= \mathbb{R}^2$ and $f$ is conjugate to a homothety or reverse homothety (depending on wether $f$ preserves or reverses orientation). A weaker version of this result was conjectured in \cite{cgx}.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.