Abstract

Abstract Today, the sensing devices play an important role for various system automation and monitoring of different physical and chemical parameters. Nonlinearity is an important long-time issue for most of the sensors, so to compensate nonlinearity, various linearization schemes are reported in the literature. The accuracy of linearization schemes depends on the type and the nonlinearity value of the sensor output. Since it is difficult to find an exact polynomial equation or other functions to represent the response curve; it gives more error when the measurement parameter is determined from the inverse approximation functions. As many sensors are used for different applications, the linearized characteristics will simplify the design, calibration, and accuracy of the measurement. This paper presents a review of different methods applied to linearize sensor characteristics reported in the literature. Due to availability of high-performance analog devices, analog methods are still popular among many researchers. However, due to the advancement of IC technologies, hardware implementation of the software methods can be done easily with reduced time, cost, and more accuracy, so the digital methods combined with software techniques perform the job with better flexibility and efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.