Abstract

The dynamics of an oil offloading catenary anchor leg mooring (CALM) buoy coupled with mooring and flow lines are directly related to the fatigue life of a mooring system, necessitating an accurate estimate of the buoy hydrodynamic response. Linear wave theory is used for modeling the surface boundary value problem, and the boundary element method is used to solve the fluid-structure interaction between the buoy hull and the incident waves in the frequency-domain. The radiation problem is solved to estimate the added mass and radiation damping coefficients, and the diffraction problem is solved to determine the linear wave exciting loading. The buoy pitch motion is investigated, and linearizations of the quadratic drag/damping term are performed in the frequency-domain. The pitch motion response is calculated by considering an equivalent linearized drag/damping. Quadratic, cubic, and stochastic linearizations of the nonlinear drag term are employed to derive the equivalent drag/damping. Comparisons between the linear and nonlinear damping effects are presented. Time-domain simulations of the buoy motions are performed in conjunction with Morison’s equation to validate the floating buoy response. The time- and frequency-domain results are finally compared with the experimental model test results for validations. The linearization methods applied result in good estimates for the peak pitch response. However, only the stochastic linearization method shows a good agreement for the period range of the incident wave where typical pitch response estimate has not been correctly estimated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.