Abstract

Nambu structures are a generalization of Poisson structures in Hamiltonian dynamics, and it has been shown recently by several authors that, outside singular points, these structures are locally an exterior product of commuting vector fields. Nambu structures also give rise to co-Nambu differential forms, which are a natural generalization of integrable 1-forms to higher orders. This work is devoted to the study of Nambu tensors and co-Nambu forms near singular points. In particular, we give a classification of linear Nambu structures (integral finite-dimensional Nambu-Lie algebras), and a linearization of Nambu tensors and co-Nambu forms, under the nondegeneracy condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.