Abstract

AbstractThis article concerns the uniform classification of infinite dimensional real topological vector spaces. We examine a recently isolated linearization procedure for uniform homeomorphisms of the form φ: X →Y, where X is a Banach space with non-trivial type and Y is any topological vector space. For such a uniform homeomorphism φ, we show that Y must be normable and have the same supremal type as X. That Y is normable generalizes theorems of Bessaga and Enflo. This aspect of the theory determines new examples of uniform non-equivalence. That supremal type is a uniform invariant for Banach spaces is essentially due to Ribe. Our linearization approach gives an interesting new proof of Ribe's result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.