Abstract

Given a basis for a polynomial ring, the coefficients in the expansion of a product of some of its elements in terms of this basis are called linearization coefficients. These coefficients have combinatorial significance for many classical families of orthogonal polynomials. Starting with a stochastic process and using the stochastic measures machinery introduced by Rota and Wallstrom, we calculate and give an interpretation of linearization coefficients for a number of polynomial families. The processes involved may have independent, freely independent or q-independent increments. The use of noncommutative stochastic processes extends the range of applications significantly, allowing us to treat Hermite, Charlier, Chebyshev, free Charlier and Rogers and continuous big q-Hermite polynomials. We also show that the q-Poisson process is a Markov process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.