Abstract
For any sequence of polynomials {pk(t)} in one real or complex variable, where pk has degree k for k≥0, we find explicit expressions and recurrence relations for infinite matrices whose entries are the numbers d(n,m,k), called linearization coefficients, that satisfypn(t)pm(t)=∑k=0n+md(n,m,k)pk(t),n,m≥0. For any pair of polynomial sequences {uk(t)} and {pk(t)} we find infinite matrices whose entries are the numbers e(n,m,k) that satisfypn(t)pm(t)=∑k=0n+me(n,m,k)uk(t),n,m≥0. We also obtain recurrence relations and other properties of the linearization coefficients. Such results are obtained using only simple algebraic properties of infinite matrices. We apply the general results to general orthogonal polynomial sequences and to some simple families of orthogonal polynomials, such as the Chebyshev, Hermite, and Charlier families.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.