Abstract
This paper deals with boundary trajectories of non-smooth control systems and differential inclusions.Consider a control system(1.1)and denote by R(t) its reachable set at time t. Let (z, u*) be a trajectory-control pair. If for every t from the time interval [0, 1], z(t) lies on the boundary of R(t) then z is called a boundary trajectory. It is known that for systems with Lipschitzian in x right-hand side, z is a boundary trajectory if and only if z(1) belongs to the boundary of the set R(1). If z is not a boundary trajectory, that is, z(1) ∊ Int R(1) then the system is said to be locally controllable around z at time 1.A first-order necessary condition for boundary trajectories of smooth systems comes from the Pontriagin maximum principle, (see e.g. [12]).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.