Abstract
We present a method to linearize, without approximation, a specific class of eigenvalue problems with eigenvector nonlinearities (NEPv), where the nonlinearities are expressed by scalar functions that are defined by a quotient of linear functions of the eigenvector. The exact linearization relies on an equivalent multiparameter eigenvalue problem (MEP) that contains the exact solutions of the NEPv. Due to the characterization of MEPs in terms of a generalized eigenvalue problem this provides a direct way to compute all NEPv solutions for small problems, and it opens up the possibility to develop locally convergent iterative methods for larger problems. Moreover, the linear formulation allows us to easily determine the number of solutions of the NEPv. We propose two numerical schemes that exploit the structure of the linearization: inverse iteration and residual inverse iteration. We show how symmetry in the MEP can be used to improve reliability and reduce computational cost of both methods. Two numerical examples verify the theoretical results, and a third example shows the potential of a hybrid scheme that is based on a combination of the two proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.