Abstract
Integrability and linearizability of polynomial differential systems are studied. The computation of generalized period constants is a way to find necessary conditions for linearizable systems for any rational resonance ratio. A method to compute generalized period constants is given. The algorithm is recursive and easy to realize with computer algebraic system. As the application, we discuss linearizable conditions for several Lotka–Volterra systems, and where this is the first time that the linearizability is considered for 3 : − 4 and 3 : − 5 resonances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.