Abstract

Egypt is almost totally dependent on the Nile River for satisfying about 95% of its water requirements. Aswan High Dam (AHD), located at the most upstream point of the fiver controls Egypt's share of water. Once a release decision is made, there is no chance of retrieving or recovering this released water. Therefore, long- and short-term forecasts of Nile flows at Aswan have been recognized to be of great importance to allow better management and operation of the reservoir.Several autoregressive (AR) models of uni- or multi-site flows upstream of Aswan had been developed to forecast monthly reservoir inflows for some lead-time. Most of these models failed to forecast, with satisfactory accuracy, the peak flows of July, August, and September due to high variability of flows during these months. Some hydrologists contributed this inaccuracy to the linearity assumption embedded in AR models.Artificial neural networks (ANNs) are being tested as a forecast tool to consider the non-linearity. Several neural networks using NeuralystTM software have been investigated against updated AR models. The results indicated that the inclusion of non-linearity in the ANNs forecast might in some cases lead to improved forecast accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.