Abstract

Modern communication signals have time-varying envelopes with significant peak-to-average ratios, resulting in low average efficiency when amplified by commonly used linear power amplifiers (PAs). For linear amplification with increased average efficiency, the Kahn envelope-elimination-and-restoration method uses a highly efficient saturated PA. In this paper, an 8.4 GHz class-F PA with 55% maximum instantaneous efficiency at 610 mW output power, is experimentally characterized in several different biasing modes. Operated in linear mode with constant drain bias, this PA has 10% average efficiency. The suppression of two-tone intermodulation products is 27 dBc when operated at about 0.7 times the peak output power. For the same PA operated in a modified Kahn mode with drive and bias control, a comparable linearity (27.7 dBc) can be obtained at peak output power. Furthermore, the average efficiency increased to 44%, a factor of 4.4 over the linear fixed bias mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.