Abstract
Nonconvex programs involving bilinear terms and linear equality constraints often appear more nonlinear than they really are. By using an automatic symbolic reformulation we can substitute some of the bilinear terms with linear constraints. This has a dramatically improving effect on the tightness of any convex relaxation of the problem, which makes deterministic global optimization algorithms like spatial Branch-and-Bound much more eff- cient when applied to the problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.