Abstract
This paper focuses on linearisation techniques for a class of mixed singular/continuous control problems and ensuing algorithms. The motivation comes from (re)insurance problems with reserve-dependent premiums with Cramér-Lundberg claims, by allowing singular dividend payments and capital injections. Using variational techniques and embedding the trajectories in an appropriate family of occupation measures, we provide the linearisation of such problems in which the continuous control is given by reinsurance policies and the singular one by dividends and capital injections. The linearisation translates into a dual dynamic programming (DDP) algorithm. An important part of the paper is dedicated to structural considerations allowing reasonable implementation. We also hint connections to methods relying on moment sum of squares and LMI (linear matrix inequality)-relaxations to approximate the optimal candidates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.