Abstract

PurposeThis study aims to propose optimised function-based evolutionary algorithms in this research to effectively replace the traditional electronic circuitry used in linearising constant temperature anemometer (CTA) and Microbridge mass flow sensor AWM 5000.Design/methodology/approachThe proposed linearisation technique effectively uses the ratiometric function for the linearisation of CTA and Microbridge mass flow sensor AWM 5000. In addition, the well-known transfer relation, namely, the King’s Law is used for the linearisation of CTA and successfully implemented using LabVIEW 7.1.FindingsInvestigational results unveil that the proposed evolutionary optimised linearisation technique performs better in linearisation of both CTA and Mass flow sensors, and hence finds applications for computer-based flow measurement/control systems.Originality/valueThe evolutionary optimisation algorithms such as the real-coded genetic algorithm, particle swarm optimisation algorithm, differential evolution algorithm and covariance matrix adopted evolutionary strategy algorithm are used to determine the optimal values of the parameters present in the proposed ratiometric function. The performance measures, namely, the full-scale error and mean square error are used to analyse the overall performance of the proposed approach is compared to a state of art techniques available in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.