Abstract
Kimelfeld and Sagiv [Kimelfeld and Sagiv, PODS 2006], [Kimelfeld and Sagiv, Inf. Syst. 2008] pointed out the problem of enumerating $K$-fragments is of great importance in a keyword search on data graphs. In a graph-theoretic term, the problem corresponds to enumerating minimal Steiner trees in (directed) graphs. In this paper, we propose a linear-delay and polynomial-space algorithm for enumerating all minimal Steiner trees, improving on a previous result in [Kimelfeld and Sagiv, Inf. Syst. 2008]. Our enumeration algorithm can be extended to other Steiner problems, such as minimal Steiner forests, minimal terminal Steiner trees, and minimal directed Steiner trees. As another variant of the minimal Steiner tree enumeration problem, we study the problem of enumerating minimal induced Steiner subgraphs. We propose a polynomial-delay and exponential-space enumeration algorithm of minimal induced Steiner subgraphs on claw-free graphs. Contrary to these tractable results, we show that the problem of enumerating minimal group Steiner trees is at least as hard as the minimal transversal enumeration problem on hypergraphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.